
The

Broadcasters’ Desktop Resource

www.theBDR.net … edited by Barry Mishkind – the Eclectic Engineer

Solutions
A Portable Raspberry Pi-based

Interference Monitor

By Dan D'Andrea

[April 2021] When a listener cannot hear a

station due to interference of any kind, it is a

serious issue.

After all, listeners are ratings, and ratings are

money.

Tracking down any intermittent problem can be

a very frustrating task. Complaints of intermit-

tent interference are particularly irksome, espec-

ially when they seem to be localized in an area

inconvenient to monitor.

In this article, we will take a look at using a

Raspberry Pi and an RFEngineers’ Watch Dog

for a broadcast engineering-related automation.

The project leads to a portable, battery-powered

system, using a Python program and a few inex-

pensive components, along with the Raspberry

Pi computer and the RFEngineers’ Watch Dog

receiver.

Once constructed, the system can be placed in a

listener’s home, place-of-work, or other loca-

tion. It will then automatically gather data useful

for tracking down the source of interference.

THEORY OF OPERATION

In this system the Pi is used to tune the Watch

Dog to a desired frequency.

Then, an indicator of interference – the signal-

to-noise ratio (SNR) for example – is monitored.

If the SNR drops below the user defined thresh-

old, interference is present. When such interfer-

ence is detected the Pi records a few seconds of

the station’s audio to a WAV file, and station

parameters, RSS, SNR, multipath, date and

time, are written to a log file.

The process is repeated by re-tuning the Watch

Dog to the First and Second Adjacent channels

respectively. The Watch Dog is then re-tuned to

the center frequency. If the station SNR is still

below threshold the process is repeated.

After gathering a day or two of data the system

can be relocated and run again. At the end of the

process you will have audio recordings of the

noise, signal strength measurements and other

parameters from multiple locations. Armed with

this information you should find tracking down

the problem considerably less irksome!

2

THE PARTS LIST

Here is a list of the parts used:

 RFEngineers Watch Dog FM/AM/NOAA +

RDS receiver, firmware v2.2.7,

 Raspberry Pi 3 Model B,

 Inexpensive USB sound card,

 Portable battery-based USB power supply,

 Ammo box (any similar container will do),

 Miscellaneous cables and an antenna.

WHY WE USED THE WATCH DOG

In addition to the Raspberry Pi, a key compo-

nent of the system is a computer-controllable

receiver. We use the Watch Dog receiver since

we have extensive experience interfacing it with

a Raspberry Pi.

The Watch Dog receiver is controlled through a

USB (serial) port. As a serial device, it is very

easy to connect and control in a variety of ways.

This extensive interface is referred to as the

Watch Dog's “Serial API.” Documentation can

be found at http://www.RFEngineers.com/WD1.

The Watch Dog's serial interface makes it ideal-

ly suited for automating with Python. We were

able to the write the Python program in about

two hours. Having access to previously develop-

ed Python code made the task even easier.

Our Python program, InterferenceMonitor.py, is

available free. You may adapt it to fit your spe-

cific needs.

PUTTING IT TOGETHER

We used a Raspberry Pi 3 Model B with a fresh

install of Raspbian OS, but just about any Rasp-

berry Pi should do. The Raspberry Pi was pow-

ered using a portable battery-based USB power

supply.

The Watch Dog and sound card were connected

to the Pi via two of its four main USB 2.0 con-

nectors. An 1/8” male to 1/8” male stereo audio

cable connected the Watch Dog's “Headphone”

jack to the “Microphone” jack on the USB

sound card.

STEP-BY-STEP SOFTWARE INSTALL

The first step in getting InterferenceMonitor.py

running is to find the Watch Dog’s serial port in

the Pi. Run the following Linux command on

the Pi to determine this:

1. dmesg | grep tty

Look for a line containing a message like USB

ACM device. Copy down the full tty value – For

example, ttyACM0 – for a later step.

Next, run the following two commands on the

Pi to install some prerequisite software (more

information is here). Note the spaces, but watch

the wrap:

2. sudo apt-get install python-dev

libportaudio0 libportaudio2 libportaudiocpp0

portaudio19-dev

3. sudo pip install pyaudio

4. Now, install the InterferenceMonitor.py

program directly into the Pi from our GitHub

repository:

http://www.rfengineers.com/WD1
https://makersportal.com/blog/2018/8/23/recording-audio-on-the-raspberry-pi-with-python-and-a-usbmicrophone
https://makersportal.com/blog/2018/8/23/recording-audio-on-the-raspberry-pi-with-python-and-a-usbmicrophone
https://github.com/rfengineers/Watch-Dog-Python
https://github.com/rfengineers/Watch-Dog-Python

3

5. Open up the InterferenceMonitor.py

program in your favorite text editor and change

the following parameters:

a. FREQ – This is the primary frequen-

cy to monitor, in MHz. For example,

89.1.

b. MIN_SNR – This is the minimum

acceptable SNR, in dB. For example,

10. If the SNR drops below this val-

ue then the setup will begin record-

ing interference measurements and

audio samples and continue to do so

until the SNR returns to this level or

higher.

c. POLL_SECS – This is how often the

program will query the Watch Dog

via its serial interface to get the latest

SNR reading. Leaving this at the de-

fault value of 2 seconds should be

fine for most uses.

d. WATCH_DOG_PORT – Put in the

value that you found above in Step 1.

For example, if the value you found

was “/dev/ttyACM1” then you would

change the value of

WATCH_DOG_PORT to:

/dev/ttyACM1.

e. USB_AUDIO_DEVICE_INDEX –

Leave this parameter set to the de-

fault value of -1. You will need to

run the InterferenceMonitor.py pro-

gram to get the proper value for this

setting. That will happen in Step 6.

f. AUDIO_SECONDS – This is how

many seconds of audio will be recor-

ded on each channel (co-channel and

adjacent channels) while interference

is detected. The Raspberry Pi will

continue to record this many seconds

of audio from each channel as long

as the interference is present.

6. Run the InterferenceMonitor.py pro-

gram. It will display all of the audio devices that

it detects and then stop execution because the

USB_AUDIO_DEVICE_INDEX setting has not

been changed from its default value of -1 in

Step 5e above.)

The last few lines of output should contain a list

of available audio devices.

In our case the sound was available as “USB

Audio Device” with an Index value of 2.

7. Reopen up the InterferenceMonitor.py

program in your favorite text editor and now

change the USB_AUDIO_DEVICE_INDEX

setting to the Index value obtained from this

step.

https://www.gatesair.com/

4

MAKING IT ALL HAPPEN

You should now be ready to run the program.

Simply execute the following command:

python InterferenceMonitor.py

Once the program was running, disconnecting

the antenna from our Watch Dog receiver was

enough for us to simulate interference.

Re-connecting the antenna to the receiver

caused the InterferenceMonitor.py program to

return to its default state.

You can see here how the simulated interference

period left us with a handful of audio samples

(WAV files) and a spreadsheet of instrument

readings (CSV file) from the period.

OPTIONAL SYSTEM IMPROVMENTS

A Raspberry Pi UPS will prevent the file system

from being corrupted if the battery runs down

before you can halt the system.

Similarly, adding a USB thumb drive for sound

and data file storage will reduce the chance of

SD card corruption in the event of an unexpect-

ed shutdown.

And, setting up WiFi Access on the Pi will al-

low you to grab the data or make adjustments to

the parameters without disturbing the system.

SUMMARY

A Raspberry Pi and a bit of Python code can be

a great “Swiss Army knife” for broadcast engin-

eers.

Our total time invested in building this tool was

less than 4 hours.

This article will hopefully get you thinking

about other opportunities and ways for uniquely

solving issues that arise in your day to day

work.

- - -

Dan D'Andrea is the “software guy” at RFEn-

gineers.

He is an amateur radio operator, embedded sys-

tems enthusiast, Software-Defined Radio (SDR)

hobbyist, and a professional software developer

with over 20 years of industry experience.

You can contact Dan at: dan@rfengineers.com

- - -
Would you like to know when more articles like this are posted?

It takes just 30 seconds to sign up – right here - for the one-time-a-week BDR Newsletter.

Return to The BDR Menu

mailto:dan@rfengineers.com
https://lists.thebdr.net/mailman/listinfo/bdr
http://www.thebdr.net/

